NEWS > RESEARCH

Engineering A Solution To Dirty Water

More than 844 million people around the globe lack access to clean water. One of the challenges is that bacteria from rivers can flow into groundwater sources, polluting what may have been potable drinking water. Building new infrastructure to reroute clean water is expensive, especially for regions that already struggle with extreme poverty. Instead, communities often rely on water filtration systems.

Current methods of testing water safety can be expensive and time consuming. Researchers must first take samples at the water source and bring them back to the lab. Then they have to test the samples to determine which types of bacteria are present.

“It usually takes hours or days, and to process the data and get results takes another few hours,” says Jianfeng Sun, a doctoral student in the Department of Mechanical Engineering at Northeastern University. Working with fellow doctoral student Ran Ran and undergraduate student Derek Tran, Sun is developing a new method that’s faster, easier to use, and portable.

The group presented the research at the 2017 Society of Engineering Science Conference, hosted at Northeastern this month. Researchers and students at the conference hail from disciplines across the engineering and science spectrum. “Their work addresses a wide range of issues including energy for sustainability, sensing and control for security, and bio-nanotechnology for healthcare,” said Hanchen Huang, Donald W. Smith Professor and chair of the Department of Mechanical and Industrial Engineering.

Traditionally, in order for scientists to measure what types of bacteria are present in water, they push the water sample through a column of soil or sand that’s native to the riverbed where the sample came from. As the water goes through the column, some bacteria gets pushed through as well, but some gets left behind. That “sticky” bacteria adhere to the surface of sand or soil particles.

That means that some types of bacteria in rivers aren’t a concern. They won’t pollute groundwater because they won’t ever reach it, instead getting stuck in the sand or soil of the riverbed.

Originally Published at News@Northeastern by Allie Nicodemo Read More